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can be extended to two-dimensional initial-boundary value UGT problems on replacing the 
fundamental solutions. 

The author is grateful to R.V. Gol'dshtein for his interest. 
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A PROBLEM IN ELASTICITY THEORY* 

V.A. YURKO 

The problem of determining the dimensions of the transverse 
cross-sections of a beam from the given frequencies of its natural 
vibrations is examined. Frequency spectra are indicated that determine 
the dimenions of the transverse cross-sections of the beam uniquely, an 
effective procedure is presented for solving the inverse problem, and a 
uniqueness theorem is proved. The method of standard models /l/ is used 
to solve the inverse problem. 

We examine the differential equation describing beam vibrations in the form 

(h@ (z) y")" = hh (X) g, 0 *:; J < T (1) 

here h(x) is a function characterizing the beam transverse section, and p = 1,2,3 is a 
fixed number. We will assume that the function h(x) is absolutely continuous in the segment 
[q, 7’1 and h (z)> 0, h (0) = 1. The inverse problem for 111 in the case p=2 (similar 
transverse sections) was investigated I2f in determining small changes in the beam transverse. 
sections for given small changes in a finite number of its natural vibration frequencies. 

Let {h%jhal,i-1,2 be the eigenvalues of boundary-value problems Qj for (I) with the 
boundary conditions 

y(0) = $1 (0) z y (T) = y' (T) = 0 

The inverse problem is formulated as follows. 

Problem 1. Find the function h(z), x~ [O, TI for given frequency spectra {htijlZ+l.j=l,a * 
To solve this inverse problem we will first prove several auxiliary assertions. 
We consider the function @ (2, V the solution of (1) under the conditions @ (0, a) : 

@ (T,h) = @'(T, k) = 0, w (0, #I) = 1. We set a(h) = CD* (0, h). Furthermore, let the functions 
CV (5, a) (v = 0, 1, 2, 3) be solutions of (1) under the initial conditions I$' (0, h) = 6,. 

Y, p -= 0, 1, 2, 3. We will use the notation Aj (h) = C,-j (2'9 ?+) Ca' (2'9 h) - C, (Z', h) Ci-j (T, h), j z 
1, 2 
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x 

11 (z) = {(h (t))(1-b)‘4dtr 
0 

It is obvious that 

@(x, h) = det [C, (z, A), G (T, A), 

and therefore 

T = Y 0”) 

C,’ CT, h)lv=dA~ (V 

CL (h) = -A2 @)/A1 (A) (2) 
Let h = p4, S = {p: arg p E (0, n/4)}. It is known (see /3, 4/, say) that the following 

asymptotic formulas hold 

l,j = (knr-')4 (1 + A&' + 0 (k-z)), k + a (3) 

Aj (h) = pj-‘Aj, eXp (p (1 - i) Z) (1 f O (P-r)) (4) 

A, (h) = 0 (PI-~ exp (C 1 k II’&) 

Q)(‘)(z, V = P~-~~~~(R~'(~))'~~~(~)~IP(PRIY(~))(I + O(P-% 

RI=-1, R,=i 

a (h) = p (1 - 4 (1 + 0 (p-9) 

(5) 

(‘3) 

as 1 h j+ w, pE S where the numbers Aj, depend on 'c and the functions gg(z) are absolutely 
continuous gt (2) > 0, g, (0) = -g, (0) = (-1 - i)-‘. 

Lenma 1. The function a(h) is defined uniquely by giving the spectra {hkl)k>,l.j=1,2* 

Proo)?. The eigenvalues (hkJ} of the boundary-value problems Qj are identical with 
the zeros of the entire functions AI (V analytic in h. Indeed, let h* be an eigenvalue 

and Q (z) an eigenfunction of the boundary-value problem Q,. Then 

q'(z) = i BpC, (Gk*) 
,,=o 

where 

Since q(z)* 0 this linear homogeneous algebraic system has non-zero solutions and, 
therefore, its determinant equals zero, i.e., A!@*) = 0. Repeating all the reasoning in 
reverse order, we obtain that if A,@*)= 0 then h* is an eigenvalue of the boundary-value 
problem Q,. 

It follows from (5) that the order of the functions A,(h) equals Va and, therefore, 
according to Borel's theorem /5/ 

A, (h) = B,n (1 - hihk,), B1 = const (7) 

Here and everywhere later, the product is evaluated over k = 1, 2, . 

Let us examine the positive function h’(z),h’(O)= 1 that is absolutely continuous in 
the segment (0, Tl. We will agree that if a certain symbol p denotes an object referring to 
(1) and constructed according to the function h(z), then p0 is an analogous object con- 
structed according to the function ho (5). 

Let to = r. We have from (7) 

A.(1) I BjSil(h) ‘kj 
Ajo( BjoSj ’ ‘jEnx’ 

Sjl(h)= n 
i 

By virtue of Eqs.(3) and (4) lim A,(h)/A,"(h)= 1. lim S,,(h)= 1 as 151~ CO, p E s and, there- 
fore 

B, = Bj’S, (8) 

We obtain from (2) and (7) 

h h--x & a(i)=B+ hk,_-i , B=-B; 

or, taking account of (a), 
0 

‘k, ‘k,-’ 
or(V=B”qg hk,_-A. 
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Hence, the assertion of Lemma 1 follows. 

Lenuna 2. Let p (z) = hP (z). The following relationship holds: 

f ((h (z) - h” (z)) hQ, (I, h) cD”(z, h) - (P (4 - P” (.c,) x 
II 

W(z, h) W”(z, h)) dr = a (h) -a’(h) 

Proof. Let 

Ihy -= (p (5) g")" - hh (2) Y 

L (Y, 2) = (p (5) Y”)‘Z - P (4 Y”Z’ + P (2) Y’Z” - Y (P (4 2’)’ 

Using relationships (lo), the equalities lhlI) (T. ?“) = ZhoW (I, A) = 0 and the boundary con- 

ditions on the functions a (I, h). (Do (.I-, A), we obtain 

{@% a) (&--I,")Q (r,h)dx =-~“(m(r,h), (mY(i, j.))I= - [@ (z,h)llO@'(r, h)ds = 
0 a 0 

Q' (0,h) W" (0, I)- @"(O,h)@"' (0.h) = a"(h)-_a (i) 

On the other hand, integrating the left-hand side of the last equality by parts, we have 

s w (5, V Cl,, - $,‘j Q, (J, A) ds = (((p (3) - p” (5)) W’ (3, h))‘W (I, h) - 

T 

(P(J) -Pa(s)) a,” (1, h)O”CC, i)) 1; -,- s ((p (2) -PO(T)) ai”(r, h)WV(J, F.) - 

A (h (-I) -ho (I)) ‘&, h) W (I, A)) dr 

Since the substitution vanishes, we hence obtain relationship (9). 

Lemma 3. Consider the integral 

J (2) = { /(z) II (1, z) d.r (11) 

f (5) x (j, + S (Z)) Z”iTL!. s (5) E c IO, Tl, s (0) = 0, n 2 0 

II (5, z) := e-la(r) (1 + E (s, 2)/z) 

a (z) E C’ [O, Tl, 0 < a (4 < a (4 (0 -c Xl ==z -4 
a(v) (5) - @Z-V (k- +O, Y = 0, I), a' (4 > 0 

where the function E (2, 4 is continuous and bounded for ZE LO, T1, ZE G * (2: argzE [--n/2 $_ 

s,, n/2 - 601, 6, > 0). Then as (z/-+00, ZEG 

J (4 = (Pz)Y (fn + 0 (1)) 

Proof. Case 1. Let a (5) E r. Then 

$‘+lJ (Z) = f,, z"+r 

$ 
.,,,,,,,:;*‘i,(,),,,, ;)d=-i-3’Lgl(.).-‘“S(~,.)d.= 

J, (z) + Ja (z) + J, (2). E (i, z) = e-%“/n! 

The estimate Ilez> co/ ~1, e,>O holds in the domain G. Since 

then 

JI (z) = f, - fnznil E (z, ;) ds 
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and therefore J1(z) -f,,-0 as ~Z~-.co,ZEG. 
Let E>O. We select 6 = s(e) such that (s(z)~<E:%/~ for IE IO, 61- Then 

,J~(~)l<e12(Bol~,)"+'~~(.~-el,~/)d~+,~/"t1~ Is(z)IE(I,--e(lzI)dz<e/2+ 
0 b 

T-b 
, z ~ntle-e.l~10 

s 

1 s (z + a) 1 e-‘*‘+ (z + Q”/nldz 

As lsl-ar,z.~G the second component can be made less than 42. By virtue of the 
arbitrariness of E we have J,(z)+0 as (zl-rn,ZEG. 

Since 1 fn + s (2) 11 5 (z, Z) I< c , then for B E G 

*.e., J, (2) - 0 as lzl-~,z~G. Therefore the lemma is proved in Case 1. 

Case 2. Now let a(.~) be an arbitrary function satisfying the conditions of the lemma. 
Then the function t= a(z) has the inverse == b(t), where b (f) E Cl (0, Z’,] where T, = a(T); 
b(t)>0 for t>O and b(‘) (t) = W-y (1 + O,(t)), B., (t) E c (0, T,], Bv (0) = 0, Y = 0,i. Let us make the 
change of variable t = a (5) in the integral in (11). We obtain 

I", 
I (z) = 1 f*(t)H*(& z) dt 

If* (t, z) = c-*~ (1 + t;b (t), 2)/z), f’ (t) = b’ (t) f (b (t)) 

It is clear that 

f* (0 = +p “, (j, + s*(t)), s* (1) E c [O. Tl], s* (0) = 0 

Therefore, the problem reduces to Case 1 and Lemma 3 is proved. 
Let us put 

Since R, = -1 and R, = i, we calculate 

A, = an 
2i (- 2)n-u 1 a, = @---)(I-+ in+l) + 2(p + i)(i + i)n+~ 

Taking account of the relationships 1 1 + in+’ 1 < J/i-, / 1 + i In-r = (ji?!)"" we obtain that 

a,#($ n>l and, therefore, A,,#0 for all n>l. 

Lemncf 4. As sct+O let 

h (5) - h" (z) - H,s"/n! 

Then as Ip l-+00, p~5’ there exists a finite limit 

F, = limp"-' (a (n) - a" (h)) 

where 

A,H, = F, (12) 

Proof. Since p (2) = h’ (I) then by virtue of the conditions of the lemma we have as 
z-to 

p (5) - po (2) - ~li,l”ln! 
Using the asytmptotic formulas (6) and Lemma 3 we find as IpI-m, p=S 
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Substituting the expressions obtained in (91, we obtain the assertion of Lemma 4. 
Let A be a set of functions analytic in the segment IO, 2'1, The following results tram 

the facts presented above 

Theorem. Problem 1 has a unique solution in the class of functions ~(J~)-_A where 
it can be found according to the following algorithm: 

1) we construct the function cz (h) according to the given spectra {hsj}a;l.jz1,2 

2) we calculate h, = h(") (O), n 2 0, h, = 1; for this we successively perform operations 
for n = 1,2, . . . . we construct the function h"(~)eA, h"(r) > 0 such that h'(v) (0) == h,, Y =- 0, 

1 7 . . ., n--l and arbitrarily in the rest, and we calculate h, from relationship (121, where 
H,, = k,. - h,,“; 

3) we determine the function h(z) from the formula 

If R< T, then for R<s< T the function h (x) is constructed by analytic con- 
tinuation. 

be 

1. 

2. 

3. 
4. 

5. 

We note that the inverse problem in the class of piecewise-analytic functions can also 
solved in an analogous manner. 
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